Аннотация

к рабочей программе по дисциплине

«Химия – общая и биоорганическая ЕН.Ф.04»

Квалификация выпускника	врач-стоматолог	
	(бакалавр, специалист)	
Направление подготовки <u>060105 (040400)</u>		
	(шифр)	
(специальность) стоматология		
(Hahmanapanna)		

(наименование)

Трудоемкость дисциплины, ЗЕТ	210 ч
Дисциплина входит в учебный цикл	Естественно-научные, математические и медико-
And many such as a security district	биологические дисциплины (ЕН)
Дисциплина входит в модуль ООП	(==)
Обеспечивающие (предшествующие)	Изучение дисциплины «Химия: общая и
дисциплины	биоорганическая» базируется на исходных
	знаниях вопросов химии школьной программы и
	медицинского колледжа.
Обеспечивающие (последующие)	Биология, биологическая химия, биохимия
дисциплины	полости рта; нормальная физиология, физиология
	челюстно-лицевой области; гигиена с основами
	экологии человека, ВГ; фармакология,
	иммунология, судебная медицина (судебная
	стоматология); военная и экстремальная медицина.
Цель дисциплины	• формирование системных знаний об основных
	физико-химических закономерностях
	протекания биохимических процессов (в норме
	и при патологии) на молекулярном и клеточном
	уровнях;
	• о строении и механизмах функционирования
	биологически активных соединений;
	формирование естественнонаучного мышления
	специалистов медицинского профиля.
Задачи дисциплины	Задачи лекционного курса:
	освещение ключевых вопросов программы.
	Материал лекций призван стимулировать
	студентов к последующей самостоятельной
	работе.
	Задачи практических занятий:
	• формирование умений и навыков для решения
	проблемных ситуационных задач;
	формирование практических навыков постановки
Oavanus marks marks	и выполнение экспериментальной работы.
Основные темы дисциплины	Общая химия.
	Раздел 1. Строение атома и химическая
	С6ЯЗЬ.

Квантово-механическая модель строения, периодический закон и периодическая система Д.И.Менделеева, s -, p -, d -, f- блоки элементов, развитие представлений о природе химической связи.

Раздел 2. Основные типы реакций, протекающих в организме.

Протолитические реакции, окислительновосстановительные реакции, лигандообменные реакции, реакции атомно-молекулярного обмена, радикального, электрофильного и нуклеофильного замешения.

Раздел 3. Элементы химической термодинамики.

Взаимосвязь между процессами обмена энергии организме, вешеств типы термодинамических систем и процессов; первое начало термодинамики, энтальпия, закон Гесса, применение начала термодинамики биосистемам; второе начало термодинамики, жиподтне, Гиббса. прогнозирование энергия направления самопроизвольно протекающих процессов в изолированных и закрытых системах, термодинамические условия равновесия.

Раздел 4. Учение о растворах.

Роль волы растворов жизнедеятельности, коллигативные свойства разбавленных растворов неэлектролитов, закон Рауля и следствия из него, осмос, закон Вант-Гоффа; элементы теории растворов электролитов, Дебая-Хюккеля, закон разведения, теория электролиты организме, изотонический биологических коэффициент, роль осмоса в системах.

Раздел 5. Элементы химической кинетики.

Химическая кинетика как основа для изучения скоростей и механизмов биохимических процессов, классификация реакций, молекулярность, порядок реакций; кинетические уравнения, зависимость скорости реакции от температуоы, энергия активации, катализ.

Раздел 6. Химия биогенных элементов.

Понятие биогенности химических элементов; классификация биогенных элементов, химия элементов S-блока, биологическая роль натрия, калия, кальция; химия элементов d-блока, образование комплексных соединений органическими лигандами; сплавы палладия, стали ортопедической И ИХ применение В стоматологии; элементов р-блока, **КИМИХ** стоматологические пломбировочные материалы,

слепочные материалы.

Раздел 7. Основные типы химических равновесий и процессов в жизнедеятельности.

Протолитические равновесия и процессы, кислотно-основные свойства слюны, зубного ликвора; механизм буферного действия, расчет рН, буферные системы крови; гетерогенные равновесия и процессы, условия растворения и образования осадков, химия костной ткани, явление изоморфизма, остеотропность металлов; лигандообменные равновесия и процессы, строение металлоферментов и других биокомплексных соединений (гемоглобин, цитохромы), термодинамические принципы химиотерапии; редокс-равновесия редокс-И процессы, потенциалы, коррозия, возникновение ЭДС в полости рта при металлопротезировании.

Раздел 8. Физико-химия поверхностных явлений.

Адсорбционные равновесия и процессы на подвижных границах раздела фаз, уравнение Гиббса; поверхностное натяжение биожидкостей в норме и патологии; адсорбционные равновесия на неподвижных границах раздела фаз, значение адсорбции для жизнедеятельности.

Раздел 9. Физико-химия дисперсных систем и растворов ВМС.

Классификация дисперсных систем, получение дисперсных И свойства систем; молекулярно-кинетические, оптические, электрокинетические свойства; устойчивость дисперсных систем, коагуляция, правило Шульце-Гарди, коллоидная защита И пептизация; коллоидные ПАВ, липосомы; свойства растворов набухание, BMC, вязкость, осмотическое давление, мембранное равновесие Доннана, онкотическое давление устойчивость плазмы, растворов биополимеров.

Раздел 10. Химические и физикохимические методы исследования в медицине и биологии.

Титриметрический анализ, закон эквивалентов, ацидиметрия алкалиметрия, йодометрия; потенциометрия, измерение электродных потенциалов; хроматография, применение хроматографии медикобиологических исследованиях.

Биоорганическая химия.

Раздел 11. Особенности химии костной, зубной и соединительной ткани, слюны, крови и др.

Объекты биоорганической химии

(углеводы, пептиды и белки, нуклеиновые кислоты, липиды, смешанные биополимеры, биорегуляторы).

Раздел 12. Строение и химические свойства органических соединений неполимерного характера, лежащих в основе функционирования биоорганических веществ.

Систематическая номенклатура органических соединений, виды ковалентной связи органических соединениях, связь пространственного строения с биологической активностью; реакции электрофильного электрофильного присоединения, реакции замещения, реакции нуклеофильного замещения (галогенпроизводные, спирты), реакции нуклеофильного присоединения (альдегиды, кетоны), реакции нуклеофильного замещения (карбоновые кислоты и их функциональные производные), поли- и гетерофункциональные соединения; химические свойства органических соединений, многоатомные спирты, фенолы, полиамины, двухосновные карбоновые кислоты, аминоспирты, аминофенолы, гидроксоаминокислоты, альдегидокетокислоты. гетерофункциональные производные бензольного ряда как лекарственные средства (салициловая, аминобензойная кислота), гетероциклы с одним и несколькими гетероатомами; понятие строение алкалоидах; металлоферментов (цитохромы, биокомплексных соединений кобаламины, гемоглобин).

Раздел 13. Биополимеры и полимеры медицинского назначения.

Пептиды и белки; биологически важные реакции α-аминокислот, роль гидроксопролина стабилизации спирали коллагена дентина и эмали, строение пептидной группы; простые углеводы, классификация моносахаридов; гетерополисахариды, влияние мукополисахаридов на стабилизацию структуры коллагена, дентина и эмали; нуклеиновые кислоты, АМФ, АДФ, АТФ. Липиды, жиры; понятие 0 полимерах стоматологического назначения.